Wednesday, 28 November 2012
Saturday, 17 November 2012
Dark Matter
Dark Matter
When the Universe
was young, it was nearly smooth and featureless. As it grew older and
developed, it became organized. We know that our solar system is organized into
planets (including the Earth!) orbiting
around the Sun. On a scale much larger than the solar system (about 100 million
times larger!), stars
collect themselves into galaxies.
Our Sun is an average star in an average galaxy called the Milky Way. The Milky
Way contains about 100 billion stars. Yes, that's 100,000,000,000 stars! On
still larger scales, individual galaxies are concentrated into groups, or what astronomers
call clusters of
galaxies.
An overlay of an optical image of a cluster of galaxies
with an x-ray image of hot gas lying within the cluster
with an x-ray image of hot gas lying within the cluster
The cluster includes the galaxies
and any material which is in the space between the galaxies. The force, or
glue, that holds the cluster together is gravity -- the mutual attraction of
everything in the Universe for everything else. The space between galaxies in
clusters is filled with a hot gas. In fact, the gas is so hot (tens of millions
of degrees!) that it shines in X-rays
instead of visible light.
In the image above, the hot X-ray gas (shown in pink) lying between the
galaxies is superimposed on an an optical picture of the cluster of galaxies.
By studying the distribution and temperature of the hot gas we can measure how
much it is being squeezed by the force of gravity
from all the material in the cluster. This allows scientists to determine how
much total material (matter)
there is in that part of space.
Remarkably, it turns out there is
five times more material in clusters of galaxies than we would expect from the
galaxies and hot gas we can see. Most of the stuff in clusters of galaxies is
invisible and, since these are the largest structures in the Universe held
together by gravity, scientists then conclude that most of the matter in the
entire Universe is invisible. This invisible stuff is called 'dark matter',
a term initially coined by Fritz Zwicky who discovered evidence for missing
mass in galaxies in the 1930s. There is currently much ongoing research by
scientists attempting to discover exactly what this dark matter is, how much
there is, and what effect it may have on the future of the Universe as a whole.
Thursday, 15 November 2012
The Black Hole
The Black Hole
Despite its invisible interior, the presence of a black hole can be
inferred through its interaction with other matter and with light and other
electromagnetic radiation. Matter falling onto a black hole can form an
accretion disk heated by friction, forming some of the brightest objects in the
universe. If there are other stars orbiting a black hole, their orbit can be
used to determine its mass and location. These data can be used to exclude
possible alternatives (such as neutron stars). In this way, astronomers have
identified numerous stellar black hole candidates in binary systems, and
established that the core of our Milky Way galaxy contains a supermassive black
hole of about 4.3 million solar masses.
A black hole is a region of spacetime where gravity prevents
anything, including light, from escaping.[1] The theory of general relativity
predicts that a sufficiently compact mass will deform spacetime to form a black
hole. Around a black hole there is a mathematically defined surface called an
event horizon that marks the point of no return. It is called "black"
because it absorbs all the light that hits the horizon, reflecting nothing,
just like a perfect black body in thermodynamics.[2][3] Quantum mechanics
predicts that event horizons emit radiation like a black body with a finite
temperature. This temperature is inversely proportional to the mass of the
black hole, making it difficult to observe this radiation for black holes of
stellar mass or greater.
Objects whose gravity field is too strong for light to escape were
first considered in the 18th century by John Michell and Pierre-Simon Laplace.
The first modern solution of general relativity that would characterize a black
hole was found by Karl Schwarzschild in 1916, although its interpretation as a
region of space from which nothing can escape was not fully appreciated for
another four decades. Long considered a mathematical curiosity, it was during
the 1960s that theoretical work showed black holes were a generic prediction of
general relativity. The discovery of neutron stars sparked interest in
gravitationally collapsed compact objects as a possible astrophysical reality.
Black holes of stellar mass are expected to form when very massive
stars collapse at the end of their life cycle. After a black hole has formed it
can continue to grow by absorbing mass from its surroundings. By absorbing
other stars and merging with other black holes, supermassive black holes of
millions of solar masses may form. There is general consensus that supermassive
black holes exist in the centers of most galaxies.
Wednesday, 14 November 2012
Thursday, 8 November 2012
Wednesday, 7 November 2012
Thursday, 1 November 2012
Bunga Raflesia
Bunga Raflesia
Rafflesia
adalah genus tumbuhan bunga parasit. Ia ditemukan di hutan hujan Indonesia oleh
seorang pemandu dari Indonesia yang bekerja untuk Dr. Joseph Arnold tahun 1818,
dan dinamai berdasarkan nama Thomas Stamford Raffles, pemimpin ekspedisi itu.
Ia terdiri atas kira-kira 27 spesies (termasuk empat yang belum sepenuhnya
diketahui cirinya seperti yang dikenali oleh Meijer 1997), semua spesiesnya
ditemukan di Asia Tenggara, di semenanjung Malaya, Kalimantan, Sumatra, dan
Filipina. Tumbuhan ini tidak memiliki batang, daun ataupun akar yang
sesungguhnya. Rafflesia merupakan endoparasit pada tumbuhan merambat dari genus
Tetrastigma (famili Vitaceae), menyebarkan haustoriumnya yang mirip akar di
dalam jaringan tumbuhan merambat itu. Satu-satunya bagian tumbuhan Rafflesia
yang dapat dilihat di luar tumbuhan inangnya adalah bunga bermahkota lima. Pada
beberapa spesies, seperti Rafflesia arnoldii, diameter bunganya mungkin lebih
dari 100 cm, dan beratnya hingga 10 kg. Bahkan spesies terkecil, Rafflesia
manillana, bunganya berdiameter 20 cm. Bunganya tampak dan berbau seperti
daging yang membusuk, karena itulah ia disebut "bunga bangkai" atau
"bunga daging". Bau bunganya yang tidak enak menarik serangga seperti
lalat dan kumbang kotoran, yang membawa serbuk sari dari bunga jantan ke bunga
betina. Sedikit yang diketahui mengenai penyebaran bijinya. Namun, tupai dan
mamalia hutan lainnya ternyata memakan buahnya dan menyebarkan biji-bijinya.
Rafflesia adalah bunga resmi negara Indonesia, begitu pula provinsi Surat Thani,
Thailand.
Nama
"bunga bangkai" yang dipakai untuk Rafflesia membingungkan karena
nama umum ini juga digunakan untuk menyebut Amorphophallus titanum (suweg
raksasa/batang krebuit) dari famili Araceae. Terlebih lagi, karena
Amorphophallus mempunyai perbungaan tak bercabang terbesar di dunia, ia
kadang-kadang secara salah kaprah dianggap sebagai bunga terbesar di dunia.
Baik Rafflesia maupun Amorphophallus adalah tumbuhan bunga, namun hubungan
kekerabatan mereka jauh. Rafflesia arnoldii mempunyai bunga tunggal terbesar di
dunia dari seluruh tumbuhan berbunga, setidaknya bila orang menilai dari
beratnya. Amorphophallus titanum mempunyai perbungaan tak bercabang terbesar,
sementara palem Talipot (Corypha umbraculifera) memiliki perbungaan bercabang
terbesar, terdiri atas ribuan bunga; tumbuhan ini monokarpik, yang artinya tiap
individu mati setelah berbunga.
Subscribe to:
Posts (Atom)